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BOUNDARY LAYER FLOW WITH HEAT TRANSFER

AT SUPERSONIC AND HYPERSONIC SPEEDS

Prepared by:

Jerome Persh

ABSTRACT: A theoretical investigation of compressible turbulent
boundary layer flow with and without steady state heat transfer
has been conducted. This investigation is based on a - ..plu
physical model of the flow suggested first by Prandtl and used
later by Doraldson. The physical model consists of' a laminar
sublayer region with a linear velocity profile and att outer tur-
bulent portion with a power law velocity profile. Comparisons
between theory and experiment demonstrate that the analysis
yields good results for compressible turbulent boundary layer
flow with and without steady state heat transfer.
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This report contains the results of a theoretical investi-
gation of compressible turbulent boundary layer flow with and
without steady state heat transfer. The significance of this
work is apparent when it is considered that although a great
deal of experimental and theoretical information exists for
supersonic turbulent boundary layers in the absence of heat
transfer, there are relatively few detailed investigations
in the supersonic and hypersonic speed ranges that include
the effects of heat transfer.
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the data contained in Table X.
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SYMBOLS

Cf - Local skin friction coefficient based on free-stream
conditions, 2 r'w/PGuC02

CF  - iMean skin friction coefficient baned on free-stream
conditions, 2D

Cfi -. Incompressible local skin friction coefficient for
zero beat transfer based on free-stream conditions

Cri - Incompressible mean skin friction coefficient for zero
heat transfer based on free-stream conditions

D - Drag force

H - Boundary layer shape parameter, 8*/6

k .- Constant in mixing length law

- Mixing length

I - Mach number

n - 8xponent in power law velocity profile representation

r - Ratio of total shear stress to viscc'* shear stress

r.f. - Recovery factor

Re - Reynolds number

T - Local static temperature

u -, Mean velocity component in x-direction

u + - Velocity parameter, u/u r (based on wall conditions)

ur  . Friction velocity Jr
x - Axial distance along surface

SY - Distance perpendicular to surface

Wall distance Parameter, V'Jr/V (based on wall condi-
tions)
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SYMBOLS (continued)

8 - Total boundary layer thickness

- Boundary layer displacement thicknessf - u00 dy

Boundary layer momentum thickness,f pu I- u dy

/A - Viscosity

- Kinematic viscosity

- Density

am Laminar shear stress

rTurb. - Turbulent shear stress

a - Exponent in viscosity-temperature relationship

Subscripts:

e - Equilibrium wall temperature

L - Values a:; the edge of laminar sublayer

T - Turbulent region

w - Values based on wall conditions

x - Values based on distanc.s from leading edge of plate

8 - Val,3s based on boundary layer thickness

e - Values based on boundary layer momentum thickness

00 - Values based on free-stream conditions outside
boundary layer
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A THEORETICAL INVESTIGATION OF TURBULENT
BOUNDARY LAYER FLOW WITH HlEAT TRANSFER
AT SUPERSONIC AND HYPERSONIC SPEEDS

INTRODUCT ION

1. Despite a lack of experimental data, numerous formulae
have leen developed for the variation of turl~ulent skin
friction on a flat plate, with and without steady state
heat transfer. The reports of Rubesin, Maydew, aud Varga
(reference a), and Chapman and Kester (reference I) include
good resumes of several theoretical treatments of this proi.lem.
All of the analyses reviewed in these references make use
of empirical constants which are dravn f'rom incompressible
experimental data. Recent experimental results (reference c)
have demonstrated that the empirical incompressible cons Lants
utilized are affected by heat transfer. Specifically, it
has been found that the assumption that the edge of the
laminar sublayer occurs at fixed values of the parameters
uL (or y,) is not strictly valid. Experimental results
indicate that the value of u+ does not only vary with heat
transfer, but to some extent with Reynolds number and Mach
number. It was felt, therefore, that a- the,.re'tical
approach which is based on a realistic physical model of the
flow, and wh'.ch allows a prediction of the quantities at the
edge of the laminar sublayer, is expedient at the present
time.

2. Such an approach was originally devised by Prandtl
(reference d) and recently extended to compressible flows
by Donaldson (reference e) The physical model of a turbulent
boundary layer proposed by ._Izcse investigators may be briefly
described as follows: It is assumed that the turbulent
boundary layer velocity profile can be divided into two
regions; the wall adjacent region called the laminar sublayer,
where the velocity varies linearly with distance from the
surface, and the outer tur;;ulcnt portion, which is represented
by a power profile. The intersection of these two profiles is
defined as the edge of the laminar sul-layer.

3. It Is the purpose of this investigation to extend and
revise the analysis of Donaldson in order to o, tain consistency
with the most recent and reliable experimental results for
low speed turbulent boundary layers. The applicability of this
analysis for compressible tur ulent boundary layers wit!h and
without steady state heat transfer is demonstrated ..y comparisons
with supersonic and hypersonic experimental results.

!I
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ANALYSIS

..nmpressible Turbulent Boundary Layers

4. It hras been established by numerous investigators that the
velocity profilc in the outer twrbulent portion of the boundary
layer may ),, adequately represented by a power profile of the
form

Y_ -Z 712 (1)
uoJ L

while experimental evidence indicates that, in the laminar sub-
layer region, the velocity profile is essentially a straight
line

!L x constant o y tr. (2)
UL aL

The boundary layer is thus divided into a turbulent portion
described by Eq. (1) and a laminar region having a linear ye-.
locity profile (Eq. 2). This is shown in Figure 1 with the
real conditions in the transition region indicated by a dashed
line.

5. Several general relations for the local skin friction coef-
ficient can be deduced using the preceding postulates regarding
the boundary layer velocity profile together with various as-
sumptions regardin, the shear stress at the edge of the laminar
sublayer. These relations necessarily embody unknown functions
which must be evaluated empirically.

6. Donaldson (reference e) introduced an crpirical constant
relating the total shear stress and the laminar shear stress
in order to compute the skin friAtion. Taking

? Lam. I, rLtrh. - = constant (3)I YLam,

and evaluating r at y - 8L from the power profile givcn by
Eq. (1), Donaldson (reference e) derived the following rela-
tion for the skin friction coefficient

I -n 2

cfj -2 [n(rl) TFiin ln iTY (4)

2
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and evaluated the constant (r-l)/k 2 empirically using Blasius, .

(refnrence d) skin friction law. In Donaldson's analysis, the
velocity profile exponent (n) is considered constant, and the

Prandtl mixing length law

is ars'med in order to calculate the turbulent shear stress,

Turb. *

7. In the present report the velocity profile exponent (n) was
taken as a variable and the method by which Eq. (4) was correlated
with experiment is za follows: First, Eq. (4) was equated to the
Karman-S&hoenherr Incompressible skin friction law

C-fi - 0.0568

LLogio (2Reg)] [LoglO (2Ree) + 0.868) (6)

which is regarded as a good representation of incompressible
turbulent boundary layer skin friction coefficients over a wide
Reynolds number range. This procedure yizided a variation of
n with Reg. A comparison was then made between experimental data
and the deduced variation of n with Reg. This approach seemed
logical becau-e the experimental variation of n with Reg is well

An examination of Figure 2 suggests that since the shear
streez is nearly constant near the wll, an alternate assump-
tion regarding the relationship between the laminar and turbulent
shear stress may be made. Within the sublayer the laminar she.:
stress predominates while outside the sublayer the turbulent
shear stress predominates, and since the transition region is
neglected in the model for the velocity profile, the values of
rTurb" calculated from Eq. (1) and *La . calculat from Eq. (2)
may be taken as each equal to the totaT sheer stress at y - 61.
Thus a logical relationship between r7,rb. and I'Lam. would
appear to be

rTurb. " "Lam. at y - 6 L

if rTub. and ?ram. are computed as indicated above. In
addition, if the von Karman mixing length formula

du

kH_
d2u

dy
2

is used instead of the Prandtl mixing length formula, each o.
the shear stress assumptions will lead to another skin f'iction
relation.

A study was therefore made to determine which of the as-
sumptions and mixing length formula yielded a skin fricLzon
law which gave the best overall agreement between theory and
experiment. It was found that Eq. (4) given by Donaldson,could best be adapted to the experimental results. The details
of this analysis are contained in Appendix A.

3
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described by a largc amount of experimental velocity profile
data. It was found that using this procedure and taking r.

k;4

as constant resulted in a variation of n with Re which is
a good average of the available experimental datl (references
c, f, g, and h). This is shown in Figure 3. The value of the
constant r - I compatible with the n variation with Re, shown

in Figure 3 is 20.0. Thir. is only slightly different from the
value of 22.5 given by Donaldson (reference e). Since in his
analysis the n variation with Reynolds number was not considered
and the Blasius (reference d) skin friction law was used to ob-
tain the constant, it is to be expected that a slightly different
constant would be obtained. The incompressible portion of the
present analysis therefore represents an extension of the Donaldson
analysis in that the n variation with Reynolds number is con-
stdered.

Compressible Turbulent Boundary Layers

8. Sidce for compressible flow, the temperature varies across
the boundary layer, it is apparent that the assumption of con-
stant shear stress through the laminar sublayer violates the

stipulation that the velocity varies linearly with distance
from the surface. It is assumed that this incompatibility does

not ntrduc an seiou erorsin the skin frictici' results.
The subsequent comparisons between theory and experiment tend
to confirm this assumption.

9. The extension of the foregoing analysis to compressible
flows is straightforward and the equations take the same form
as those given in reference(e). If the value of the constant r
obtained by the procedure described above is assumed to be the
same for both incompressible and compressible flows with and
without heat transfer, then Eq. (4) is valid for these cases if
the density and viscosity contained in the Reynolds number are
evaluated at the edge of the laminar sublayer. It is desirable,
however, that the Reynolds numbt be expressed in terms of free-
stream propertiem, This transformation is presented in reference
(e)and in Appendix B where it is shown that the resulting equa-
are as follows:

n - g)

T L (-1 ri N21 Tw-Tg UL
;F l+r.f I- UI- (8)(a2 um T~ L~

4
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1
n+1.1 F20on 1

- 11110 WX1.76
.. _ 1 M2 TV Te In + 1

a) L(9
10. Values of n for use in these equations are obtained from
the curve of Figure 3. Using this single curve as a determining
factor for n implies that n is uniquely related to Re regard-
less of Mach number or heat transfer condition. Alth~ugh the
results shown in Figure 3 tend to justify this postulate, probably
the Mach number and heat transfer influences on n are concealed
by the insensitivity inherent in this coordinate system. A com-
parison between a plot of n versus Ree and n versus Resindicates
that some influence of Mach number and heat transfer Is probably
incorporated in both figures, but is appreciably less in the Res
plot. It is felt, therefore, that a more accurate determination
of n may be obtained when Reg is used as the correlating factor.

11, Since Reg was chosen as the correlating factor for n and
Eq. (7) requires the use of Res, a means is therefore needed for
converting given values of Res to the equivalent Res. The needed
0/8 values have been calculated using the definition for e witn
Eq. (1) and the Orocco temperature distribution (reference e) for
a series of Mach numbers up to 20, a wide range of heat transfer
conditions, and n values of 5, 7, 9, and 11. These are tabulated
in Table I. Also tabulated for the same range of variables are
the values of 8*/ and H. It should be noted that the foregoing
procedure for calculating these farameters ignores the laminar
sublayer because the power prof le is assumed to exist to the
wall. While this procedure ii: not quite exact, it is felt that
only small errors will result because by far the largest contri-
butionsto the integrals for 6* and 0 occur outside the laminar
sublayer.

12. Using the present analysis, skin friction coefficients can
be calculated if the Reynolds number is given in terms of either
the total boundary layer thickness (Reg ) or the boundary layer
momentum thickness (Reg), or, es will be shown later, in terms

of the distance from the leading edge. Since the dependence of
0/8 with Mach number and heat transfer is not consideied in
Donaldson's (reference e) analysis, the skin friction coefficient
can be evaluated only if the value of Res is known.

13. Whether or not the postulated uniqueness of n with ,e
leads to serious errors may be checked by comparing the influence
of n on cf over a range of Mach numbers for a fixed value ofRee. A value of Ree of 8000 was selected for the check proced.re,

5
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and the n value Wag vt.ried between 5.5 and 7.5 which encompasses
the scatter of the experimental data at this point. It was
found that the values of cf over a range of Mach numbers up to
10 were no more than 6 percent above cr below the curve drawn
for the value of a theoretically assockated with an Ree of 8000.
On the basis of this check it w*s concluded that the qkin fric-
tlon v.lues obttned from the present anAlynis are not particularly
sensitive to the value of n asoociAted rith the Re6 in question.

14. This result enables the approxinsato calculation of the varia-
tion of cf/cfi an a function of Rex . If ef/cfj is not particularly
sonvittive to n, it may be assumed that for a given Mach number
and heat transfer rate, the value of 0/6 along a plate is constant.
This assumption is necessary to perform the integration indicated
in Appendix C. Usiug this assumption, a relation betweet U& and
Rex may be deduced. The details of this derivation are given in
Appendix C, where it is shown that the resulting eq.tation in

n+ 1

n -(10)

It is not stipulated, however, that the value of (n) for une
in equation (10) is a constant. Curves showing the variation
of cf/cfi as a function of Mach number for several coroatant
values of wall temperature ratio and a constant valua of Rex
of 107 (Figure 15) calculated using the equations of Appendix
C are in good agreement with the empirical curves of Seif

°

(reference a). Results obtained using the cquations of Appen-

dix C should therefore suffice for most engint-_ring applica-
tions.

15. The recent acquisition of detailed experimental data at
hypersonic Mach numbers at both the Naval Ordnance Laboratory
and the Applied Physics Laboratory (references c and f),both
with and without steady state heat transfer, made it possible
to examine not only the overall results ot the theory but also
the validity of the assumptions made and the use of constants
drawn from incompressible flow results.

16. The first step is to examine the conditions at the edge of
the Inakinar sublayer. This is necessary because the theory is
focused on this point. For incompressible flows it has long
been assumed that the value of u+ - y1 at the edge of the lam-

inar sublayer (in the 1oarithmic velocity profile representation)
is roughly a constant that lies betweea 11.0 and 12.0. The
present analysis is not based on this asaumption but is so con-
structed that a coapuatation and check of the resulto obtained for
thim point ma be made.

6
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17. The theoretical variation of uL with Re9 ib compared with
experimental data (references i and .) for incompressible flow
in Figure 4. It is apparent that the accepted presumption that

UL L is a constant is not f1r from true; however, the theory
and exp.riment indicate that Reynolds number does influence the
valu0 Of t.l - Y slightly.

18. Figuire 5 shows a comparison between the theoretical and
experimental values (references c, f, and k) of u y for
compressible flow. ?or Lhis comparison all valucs of uL - YL
are based on wall properties. Th_ theoretical curves associated
with each set of experimental data were calculated such that
they encompassed the experimental Mach number and Reynolds
number range. Although the present annlysis does not accurately

predict the numerical values of uL - y it does predict the
proper trend of the data for both the heating and cooling cases.

19. In the formulation of this analysis, the incompressible
skin friction law of Karman-Schoenherr has been used as a basis
for the zeiU IeaL Lrauw~r cas. Unfortunately, little exper-
imental data are available which describe the influence of heat
transfer on incompressible skin friction coefficients. The
analysis can, however, be applied to this case and comparisons
made with the few data that are available. The experimental
results of reference (1), while not reported in sufficient de-
tail to make an exact computation using the present analysis,
may be used to show that it does predict qualitatively correUL
results. Ir using these experimental data for this comparison
it is assumed that the ratio cf/cfi can be used interchangeably
with CF/Cpi and that little Reynofhs number dependence on this
ratio exi.st. Figure 6 shows both the predicted _.ld cxperimental
variation of cf/cfi with wall temperature ratio for a constant
value of Re0 which represented a mean for the data of reference
(3). The results shown in this figure demonstrate that the pre-
sent analysis describes coiyectly the variation of cf/cfi with
increasing wall temperature ratio. Figure 7 shows the influence
of heat transfer parameter on the values of cf/cfi for several
values of Hach number and a single value of Re@. It is ap-
parent that cooling of the surface results in an increase in
the skin friction coefficient, whereas heating has the opposite
effect. That this result is consistent with the incompressible
results shown in Figure 6 is evident from the results shown in
Figure 8. This figure shows the variation of cf/cf i with Mach
number for several constant values of Tw/TOD. The curves of
constant Tw/Tc intercept the zero heat transfer curve at only
one point. Each intercept occurs at the Mach number where
Tw/T -Te/To . A curve of the name appearance has been do-
duceTPby Seiff (reference m) from an empirical correlation of
experimental data for Mach numbers up to about 5. A direct
comparison between the results presented in Figure 8 and tho;c
reported in reference(s) is not valid because the curves of
Figure 8 were computed for constant Re 0 and depend somewhat on
this Reynolds number, whereas those of reference(m) are as-
sumed to Ut; ind4pendent of Reynolds number Iaxeld on distarice
from the leading edgo.

7
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20. A comparison between specific values of experimental skin
friction coefficients and the associated values predicted by
the present analysis is shown in the following three figures.
Figure 9 shows the variation of cf/cfi with Mach number for
zero heat truasfer. All of the experimental data (references
n, b, c, f, k, n, o, and p) shown were normalized to a constant
ftee of 3000 and are either specifically for the case of zero
heat transfer or were linearly extrapolated to the zero heat
tr-nsfer condition. The scheme used for processing the heat
transfer results is outlined in reference (c). Good agree-
ment between theory and experimcnt is found for the entire
range of Mach numbers for which experimental data are avtilable.
Figures 10 and 11 ahow comparisons between theoretical and ex-
perimental values of cf/cfi plotted as a function of heat
transfer parameter for those experimental data taken under con-
ditions of steady state heat transfer (references c, f, and k).
For each of the sets of data shown, the variation of Reynolds
number with heat transfer rate, if any, was considered in the
theoretical calculations. It is significant to note that the
results shown for the data of r#%fro-__ (,) 4n Cate 'iLL'C

variation of skin friction ratio with increasing heat transfer.
From the present analysis it appears that the increase in
Reynolds number, which accompanied the increase in heat trans-
fer rate, so influenced the results as to obviate any increase
in skin friction ratio. In general, the agreement between
theory and experiment is satisfactory for each of the sets of
data shown.

CONCLUDING REMARKS

21. A theoretical investigation of compressible turbuient
boundary layers with heat transfer has been conducted. This
investigation is based on a simple flow model which is realistic
for both the zero heat transfer *nd heat transfer conditions.
The validity of the flow model ak.-vumed is demonstrated by com-II parisons between theoretical and experimental results. The
theory is presented in such a fashion that values of skin fric-
tion may be calculated when either the Reynolds number based
on boundary layer momentum thickness, total boundary layer
thickness, or distance from the leading edge is given. Good
agreement is demonstrated between theoretical and experimental
vulues of skin friction coefficients, for both the zero and
heat transfer conditions. It is shown that the predicted
influence of heat transfer and Reynolds number on the proper-
ties at the edge of the laminar sublayer is consistent with
the available experimental data for both incompressible and
compressible flows. It is anticipated that, with the acquisi-
tion of additional data covering a broader range of conditions,
improvements will be made in both the functional nature and
accuracy of the analysis.

S
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APPENDIX A

General Relations for the Local
Skin Friction Coefficient

1. The equation of motion to be satIsfied by a boundary
layer flowing on a flat plate in the absence of a pressure
gradient is:

u _.0,d411 ldt I d[P du .+,,J2 (duN2 ] (Al)
dc dy Tyf dy Ldy "yJ

The total shear stress at any point in the boundary layer is

tfm+?1A Turb y (!!-) 2  (A2)

Donaldson (reference e) assumed that the ratio of the total
stress to the laminar stress at the edge of the laminar sub-
layer is a con.stant,

Lam. + ?'Turb.-. ____- r - constant at y - (8
r am. L

Using this assumption, and evaluating Eq. A2 at y - SL by
using,

1- n

du uaD SL
" n T ln (A4)

which is obtained from the power profile (Eq. 1), it can be
shown that the thickness ratio of the laminar sublayer is

n

n(r-l) 5L 2 "  (A5)

F 1 2 Res

2. It may also be logically assumed that at y - 8 L, the
laminar shear stress is equal to the turbulent shear stress

1La.. " Turb. at y - S
Evaluating tTurb usig Eq. 1 and tL. using Eq. 2 yields the

following exrressionl for the thickness ratio of the laminar

i11
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sublayer

n 
2  l' nreg2 (AG)

Equations (A5) and (AG) necessarily contain the so far un-
determined mixing length "I" for which either the Prandtl
mixing length law

- k y (A7)

or the von Karman mixing length law

du

f- k TA8)

dy
2

may be used.

3. It is evident therefore, that the assumptions used to
obtain equations (A5) and (A6) together with the mixing length
laws given in equations (A7) and (AB) will yield four equa-
tions fo the thickness ratio of the laminar sublayer. These
are tabulated below;

Assumption Mixing length Laminar
law sublaycr thick-

ness ratio

Equation (A5) Prandtl n

(Eq. A7) SL I n(r-l)I +T

2nn-
von Karman n +.1(Eq. A8) L. (r- ) ] - 1"

Equation (A6) Prandtl n
(Eq. A7) 6L n2  Jn+l

2n
von Karman 4.

12
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The local skin friction coefficient for incompressible flow
may be calculated using the substitutions

T'w UL

ULU 112L (j '/n

and
c f -2 Tw

together with each of the equations for the laminar sublayer
thickness ratio. These are tabulated below.
Assumption Mixing lengt Local skin friction coefficient

law law

Equation (A5) Prandt . 1 n 2 (A9)
(Eq. A7) cf1 w 2[fn(r-1) T -n I' I n' (A)

von Karman I-n 2 2(1-n)1 n1 "l-
(Eq. AS) - 2L ln .(-- (AI1)

I-a 2
Equation (A6) Prandtl ^n2 ' ['-n n +1

(Eq. A7) ctfi w 2 P-,j j (All)

1-n 2 2(1-n)

von Narmar n + , - n
(Eq. A8) cri - 2 . .f I "

1  (A2)

13
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APPENDIX B

Ierivation of Local Skin Friction Coefficient
Law for Compressible Turbulent

Boundary Layers

1. It has been shown that equation (4) was the most suitable
for incompressible turbulent boundary layers. This law is
given as 1-n 2

2 2~On jij (4)

To extend this relation to compressible flows the property
values (density and viscosity) need be evaluated at the edge
of Lhe laminar suhlaver. Equation (4) mny be written in the
form

1-n 2 2

3. [20 n i n] I -L K L (Bl)

using the following substitutions

L TOD

and

A. [Tm]

in equation (Bl), yields the following relationship:
-n 2 n-2-1

C f w 2 [nnf[.li (B21

2. To evaluate TOD it will be assumed that the Crocco

quadratic form for the temperature distribution given as

TP - A I. B B3

is valid By evaluating equation (03) wilth the usual boundary

conditions, the following equation results

14
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TL Tw [Tw - T l [eo ul j2
- -" Tm(B4)

:1. Equation (B4) may also be written as

TL 1rI - 2 L 11_ 2] - T 05)

2C Tcx L Uai

with the velocity ratio at the edge of the l.an!nar sbl.ayer
given as

1 TwT u2Res 2 1 .. rf - MOD +- - ' -

I00 2 [ uLm Tc (B6)

4. For all calculations using equations (02), (B5) and (B6)
W has been taken is 0.76 and the value of r.f. as 0.896.

I

11

l.



NAVORD Report 3854

APPENDIX C

Derivation u Local and Average Skin Friction
Coefficient Laws Based on Re.

1. For incompressible flow the momentum equation for the
boundary iayer in the absence of a pressure gradient is

de_. Pf

dx - (Cl)

or

dRee jf

2 (C 2
dRex

The following relation results when the right hand side
of equation (4) is inserted into equation (C2);

1-n 2 2
dRee 20 1-4n I-i~l _n_ n+1
dRex I ' 10 "(n + 1) (nn)- (C3)

and the suhstitution _ (n +l)(n 4-2) is used.
8 n

Equation (C3) can be integrated by assuming that n is
a constant along a given plate (or 9 is const-nt). Whether

or not this is a valid assumption -,il be verified by a com-
parison between the von Karman incoi-..reosible mean skin fric-
tion law and the derived relationship. Integrating equation
(C3) yields 2

n + 1 n+ n- n + 1 nflex
(Ren) n1 2 n (n-t 1)(n +2) (C4)

and since

CFi Re
2 -Rex (C5)

equation (C4) can be manipulated to yield

16
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nfl

n-l 2ni.3

(,t. ne- 1no n j n ( +1)(n + ) (C6)

A comparison between the values of CFi obtained from
equation (CG) (using the n values associated with the Re0

values of figure 3 and equation (C4)) and the values of CFi
from the von Karman mean skin friction equation for incom-
pressible flow

0.242 cFi Re)I
- Log10  (C7)

indicated that over the Reynolds number (Rex) range from

0.5 x 106 to 60 x 106 the agreement between CFi values is
within 4 percent. This result means that at least for
incompressible flow the assumption that n is a constant
along a plate can only lead to small errors in the estima-
tion of skin friction values.

Using this information, the incompressible law forlocal skin fric'.ion coefficients on i Rex basis may then be
derived. The momentum equation can be written as

d6 6

WX - MPf (C8)

Substituting equation (4) yields

1-n 2 2

3-x 79 Won 6 + 1) (a 2d (c9)

which may be integrated to yield the following relation

n __n- 2
Re6  fI[ 1 n+, (ClO)

Re nl e
By inserting equation (CIO) into equation (C3) the following
local skin friction law results

L
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iA2
n-i __ 2Cl

ii~~ or(Ci

n-1 2 2

rA-i t L n)n ) n 3+ W~J(12)

2 nn + 2(n Rexn.t

2. For compressible flow the extenncion of the foregoingI expressions for the mean and local skin friction coefficients
to compressible flows necessitates the use of an additional
approximation the accuracy of which is checked with the
available expexintental data.

The local skin friction law (equation B2)

n-1 2 n- 2.52

-n n n + I :

A I n (B2)

embodies te term (Tol which cannot be a predetermined

constant because it depends on Reynolds number as i be seen
ii. the following equations:

TL 2-I1 UL Tw_ u, Te U
IT I- r.f. .-- Moo I - (C13)
002 t IODlo 0

where .1 .76
-- 1 n -, I (B6)

FTL or
uLj [ OL' (C14)

nor, a

However, if T D is assumed to be a constant that is as-
TL

sociated with an average value of Reynolds number, the results
that are obtained may be of sufficient accuracy for most
applications. This iv a logical step because for a given Mach

E numer and ieat transfer rate ul, is not seriously dependent

Mc
!,0
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on Res or Rex . Using this assumption, the following relations
may be derived from an integration of equation (M2).

C ~ [[!tl 1 -2 [T ] .5 []2}Fit_.1 + "70

and
nR41nel n- 1 n-2.52] n+ 3

0 [+~xj I) (20 (C16)

where Rex is given by

ex = j Rex (maximum)

To determine local skin friction coerficients with the
knowlege of only values of Rex it is necessary to have avail-
able the variation of n with Rex and Reg for use in equation
(C16). A calculation of the variation of n with Rex and Reg
has been carried out for the zero heat transfer case and the
results are plotted in figures 12 and 13 respectiv".. These
calculations were made using the results tabulated in Table I,
figure 3, and equations (C13) and C14). Curves similar to
those shown in figures 12 and 13 may be prepared for different
heat transfer rates by the same method.

Using the data plotted in figures 12 and 13 the procedure
for calculatngo£ as a funntion of Rex is as follows:

1. Determine the maximum value of Rex to be encounted for
a given problem. The selection of this value determines n,Rg, and Rex .

2. Solve equation (C16) for TODT-,'

3. Insert the values of TOO, u, and Reh in equation (02)
and solve for Cf. TL

By a similar procedure equation fC15) may be used to
calculate mean skin friction coefficients.

As a check on the approximate analysis described abovc,
the variation of c /cfi with Mach number has been carried out
for three values o Rex sufficient to encompass the Rex range
of the available experimental data. Figure 14 shows the

19

ii"M



NAVORD Report 3854

results of Lhese calculations compared to the available ex-
perimental data. The good agreement between theory and ex-
periment tends to jusLily the approximations made in the
preceding analysis.

Figure 15 shows the variation of the skin friction ratio
with Mach number for a number of constant values of wall to
frcc stream temperature ratio and a constant value of Rex of
107 . The similarity between curves of this figure and the
results plotted in figure 8 is apparent. However, differences
in the curve shapes and corresponding values of the skin
friction ratio can be seen by careful examination.

1
I

I
I1

I
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TABLETI

mo*o W16010 t0Cl RATIO3, 1. AND5 00901R 4±. so wk l RAI. 1. 01 IIVA. 9I

5 91490 9301818t RCSNUH. 6, AND NUT A? Il MA% 8m098t AM"M.V.u pt"An

IAPAUi, - i ll A IU*CS?? PR02MS UPONS11, .,00 8.6 40*4 ..Sr...*R. - T IN£ "hITY 00003.1 119*62, a, Of 1.0

10 0.141 0.06 .75 . *a19 sua sos
4.0 0, 0,006412 7 ."S233 4.0 0.3990 0.0122? 1.6$21

4.0 0.03 0.03744 16.1021 4.0 0.539a4 0.034191 : 4O49"4
10.0 o.7so, A~ aa 41.81021 10. i:ao, 001 40.416

0.0 0.051 00243 136321. 0.1266 0.1243 300

1I. 0 .511 4..41 1.40 10. 0.0 3 0.04410 51?3a1
10. 0.078 0.013 16.7876 0.0 0. 032 ..... .11 3 00

0.0 .0 U .323444 0.001044 0401 7. .00340"60.1114 3.1744Oi4

4.0 0.304 0.093 'u 046 4.0 13"3218 000 if081
60.0 0.42601 0.02110 36i.031 00.0 0.6160 0.4016 W7.6031
6. 20 0 0.74334 0.0.1 11.016 6.0 U.14 .110 1.010.0 0..1. 3? 0.03 431' 30.0 :1i3 .0217 4333

alo ~ ~ 3 0.:010*0041 13 18 as.. 0. ,843 0,0 1 78.6143180.0 0.70664 0.0234? 164.21444 1. 074 ON40 16.8

40.0 0.763? 0.0437 4432. 0 4.0 1 0 .444 0001 3.40
6.J 0600 .01041 61.031 6.0 0.108.1 0.00 0 4 0.111

14.0 : 0731' 0.4013 3 .,3380 10.0 9.00 8? Close4 so040
20.0 0.01410 0034 6.0448 33.0 0.7130 0,311 03.110 6
'::a 0.8:0 0.04481 1233 ' 301.0 0.6416 0.00448 13 .6400

300 6006 0.0041 I.104. 10.0 0.81330 0.00143 a43.47.7

0.0 4.0 0 0.41804 0.011 $,.14 1.0 6.0 0 .460 .068 .90
3.0N'I' $Jilt0s00 0.34 10 0.93 0.0440 3071.3233
0.0: 0463 0.12 300460 0.00900 0.030"4 11.044613

a .0) 0.713 023 34.64833s8.0 0.671402 0.014 33903
30.0 1.1821 0.01s8 3 24.23 30. 0.73313 0.031341 361.4967

3 31.~ ~~~~~0 .72l3ao 0.013 6683 330 0161 .001 0.11
14.0 0.43 41 6 1 01 34.0 0.630 16 0.00? 6.013301
30t.0 0.04 0.001913346.1413 30. 0.TIN1 0.,041 I0.10
30.:0 064101 0.001 230.1420 3.0 0.688 .02 2.40

a , .,317 0 .04 106 14.0071. .16 .01 0,00
0.0 0. 0 0.0190 0.04 34 1 . . 1 .44.s 0.046 1 3.48

0 0.054 0.0149 144.60 40.0 0.63130 0.09641 It683
0 0.4381 0.166.000 . .02 .003 3.10

3'1 0.30 .360 69::05330 0.16 0.033861 o.:80
30.0 0.l.80 0.1013 1341483. 0.08 0.14 39363
34.0 0.13110 0.048 14.073.0 0.82 0043 36.3?4

30. 09030 C.01324 3,113 1 "0. 0,1? 0, ",8 300.00

8. 0.) .8160 0f044 4. 3 S. 30.00 01300673 8.0.190 33."340
3.0o .12 0 6.012S36 44014 0. .88 .01846 04.8104
14.0 4.0 .S 0.104 9.4401 38.0113

1 0 .40 0.833 19884.0 0.4414: 0.03I8 91.3031.0 0.104034 0.013 Ill.011 6.".03 .0:3 3.16s.0 0140 040 30.7732" 10.9 0.1404 0s .0432 8.310

lo.0 0.00 0431 04.701 13.0 0783 0.033130 IF0.30
33.0 4.6117 0. 03#10 1.80003. 0636 427 .0se 33 00

::14 0.003 :. ::4411 0,01903 31.8109
W ""__ _ _ _ _ _ _ _ _3_ _ __10_1_f_0.0 _._0 _ _0014_ _ _._ _4

it's 0.912 .01106 a 1 ..0

Si, -* 07." 3

14.0 0.9443 00094 to.1. oU ,
16. _ _ _ __6_96 14115 ts3v



NAVORD REPORT 3854

TABLE I (CONTINUED)
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I -I

2.0 0.2360 6.4003 3.40 . 0.3M 3093 1721
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TABLE I (CONTINUED)
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TABLE I (CONCLUDED)
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